A Case of Mistaken Identity? Another Disease That May Mimic SCN

The hallmark of LGL leukemia is a high lymphocyte count and a low neutrophil count. People with LGL leukemia can report having no symptoms or many symptoms. Symptoms can include night sweats, weakness, dizziness, frequent fevers, fatigue, anemia, an enlarged spleen, and other varying symptoms.

In normal blood, 10 percent to 15 percent of the lymphocytes are LGLs. LGLs have a characteristic appearance: they are larger than normal lymphocytes and contain pink granules. LGLs may either be a T-cell or NK-cell type of lymphocyte. LGLs are part of the normal immune system and are killer cells, which fight viruses. LGL leukemia occurs when your lymphocytes is higher than normal.

The hallmark of LGL leukemia is a high lymphocyte count and a low neutrophil count. People with LGL leukemia can report having no symptoms or many symptoms. Symptoms can include night sweats, weakness, dizziness, frequent fevers, fatigue, anemia, an enlarged spleen, and other varying symptoms.

In normal blood, 10 percent to 15 percent of the lymphocytes are LGLs. LGLs have a characteristic appearance: they are larger than normal lymphocytes and contain pink granules. LGLs may either be a T-cell or NK-cell type of lymphocyte. LGLs are part of the normal immune system and are killer cells, which fight viruses. LGL leukemia occurs when your lymphocytes is higher than normal.

The hallmark of LGL leukemia is a high lymphocyte count and a low neutrophil count. People with LGL leukemia can report having no symptoms or many symptoms. Symptoms can include night sweats, weakness, dizziness, frequent fevers, fatigue, anemia, an enlarged spleen, and other varying symptoms.

In normal blood, 10 percent to 15 percent of the lymphocytes are LGLs. LGLs have a characteristic appearance: they are larger than normal lymphocytes and contain pink granules. LGLs may either be a T-cell or NK-cell type of lymphocyte. LGLs are part of the normal immune system and are killer cells, which fight viruses. LGL leukemia occurs when your lymphocytes is higher than normal.

The hallmark of LGL leukemia is a high lymphocyte count and a low neutrophil count. People with LGL leukemia can report having no symptoms or many symptoms. Symptoms can include night sweats, weakness, dizziness, frequent fevers, fatigue, anemia, an enlarged spleen, and other varying symptoms.

In normal blood, 10 percent to 15 percent of the lymphocytes are LGLs. LGLs have a characteristic appearance: they are larger than normal lymphocytes and contain pink granules. LGLs may either be a T-cell or NK-cell type of lymphocyte. LGLs are part of the normal immune system and are killer cells, which fight viruses. LGL leukemia occurs when your lymphocytes is higher than normal.

The hallmark of LGL leukemia is a high lymphocyte count and a low neutrophil count. People with LGL leukemia can report having no symptoms or many symptoms. Symptoms can include night sweats, weakness, dizziness, frequent fevers, fatigue, anemia, an enlarged spleen, and other varying symptoms.

In normal blood, 10 percent to 15 percent of the lymphocytes are LGLs. LGLs have a characteristic appearance: they are larger than normal lymphocytes and contain pink granules. LGLs may either be a T-cell or NK-cell type of lymphocyte. LGLs are part of the normal immune system and are killer cells, which fight viruses. LGL leukemia occurs when your lymphocytes is higher than normal.

The hallmark of LGL leukemia is a high lymphocyte count and a low neutrophil count. People with LGL leukemia can report having no symptoms or many symptoms. Symptoms can include night sweats, weakness, dizziness, frequent fevers, fatigue, anemia, an enlarged spleen, and other varying symptoms.

In normal blood, 10 percent to 15 percent of the lymphocytes are LGLs. LGLs have a characteristic appearance: they are larger than normal lymphocytes and contain pink granules. LGLs may either be a T-cell or NK-cell type of lymphocyte. LGLs are part of the normal immune system and are killer cells, which fight viruses. LGL leukemia occurs when your lymphocytes is higher than normal.

The hallmark of LGL leukemia is a high lymphocyte count and a low neutrophil count. People with LGL leukemia can report having no symptoms or many symptoms. Symptoms can include night sweats, weakness, dizziness, frequent fevers, fatigue, anemia, an enlarged spleen, and other varying symptoms.

In normal blood, 10 percent to 15 percent of the lymphocytes are LGLs. LGLs have a characteristic appearance: they are larger than normal lymphocytes and contain pink granules. LGLs may either be a T-cell or NK-cell type of lymphocyte. LGLs are part of the normal immune system and are killer cells, which fight viruses. LGL leukemia occurs when your lymphocytes is higher than normal.

The hallmark of LGL leukemia is a high lymphocyte count and a low neutrophil count. People with LGL leukemia can report having no symptoms or many symptoms. Symptoms can include night sweats, weakness, dizziness, frequent fevers, fatigue, anemia, an enlarged spleen, and other varying symptoms.

In normal blood, 10 percent to 15 percent of the lymphocytes are LGLs. LGLs have a characteristic appearance: they are larger than normal lymphocytes and contain pink granules. LGLs may either be a T-cell or NK-cell type of lymphocyte. LGLs are part of the normal immune system and are killer cells, which fight viruses. LGL leukemia occurs when your lymphocytes is higher than normal.

The hallmark of LGL leukemia is a high lymphocyte count and a low neutrophil count. People with LGL leukemia can report having no symptoms or many symptoms. Symptoms can include night sweats, weakness, dizziness, frequent fevers, fatigue, anemia, an enlarged spleen, and other varying symptoms.

In normal blood, 10 percent to 15 percent of the lymphocytes are LGLs. LGLs have a characteristic appearance: they are larger than normal lymphocytes and contain pink granules. LGLs may either be a T-cell or NK-cell type of lymphocyte. LGLs are part of the normal immune system and are killer cells, which fight viruses. LGL leukemia occurs when your lymphocytes is higher than normal.

The hallmark of LGL leukemia is a high lymphocyte count and a low neutrophil count. People with LGL leukemia can report having no symptoms or many symptoms. Symptoms can include night sweats, weakness, dizziness, frequent fevers, fatigue, anemia, an enlarged spleen, and other varying symptoms.

In normal blood, 10 percent to 15 percent of the lymphocytes are LGLs. LGLs have a characteristic appearance: they are larger than normal lymphocytes and contain pink granules. LGLs may either be a T-cell or NK-cell type of lymphocyte. LGLs are part of the normal immune system and are killer cells, which fight viruses. LGL leukemia occurs when your lymphocytes is higher than normal.

The hallmark of LGL leukemia is a high lymphocyte count and a low neutrophil count. People with LGL leukemia can report having no symptoms or many symptoms. Symptoms can include night sweats, weakness, dizziness, frequent fevers, fatigue, anemia, an enlarged spleen, and other varying symptoms.

In normal blood, 10 percent to 15 percent of the lymphocytes are LGLs. LGLs have a characteristic appearance: they are larger than normal lymphocytes and contain pink granules. LGLs may either be a T-cell or NK-cell type of lymphocyte. LGLs are part of the normal immune system and are killer cells, which fight viruses. LGL leukemia occurs when your lymphocytes is higher than normal.

The hallmark of LGL leukemia is a high lymphocyte count and a low neutrophil count. People with LGL leukemia can report having no symptoms or many symptoms. Symptoms can include night sweats, weakness, dizziness, frequent fevers, fatigue, anemia, an enlarged spleen, and other varying symptoms.

In normal blood, 10 percent to 15 percent of the lymphocytes are LGLs. LGLs have a characteristic appearance: they are larger than normal lymphocytes and contain pink granules. LGLs may either be a T-cell or NK-cell type of lymphocyte. LGLs are part of the normal immune system and are killer cells, which fight viruses. LGL leukemia occurs when your lymphocytes is higher than normal.

The hallmark of LGL leukemia is a high lymphocyte count and a low neutrophil count. People with LGL leukemia can report having no symptoms or many symptoms. Symptoms can include night sweats, weakness, dizziness, frequent fevers, fatigue, anemia, an enlarged spleen, and other varying symptoms.

In normal blood, 10 percent to 15 percent of the lymphocytes are LGLs. LGLs have a characteristic appearance: they are larger than normal lymphocytes and contain pink granules. LGLs may either be a T-cell or NK-cell type of lymphocyte. LGLs are part of the normal immune system and are killer cells, which fight viruses. LGL leukemia occurs when your lymphocytes is higher than normal.

The hallmark of LGL leukemia is a high lymphocyte count and a low neutrophil count. People with LGL leukemia can report having no symptoms or many symptoms. Symptoms can include night sweats, weakness, dizziness, frequent fevers, fatigue, anemia, an enlarged spleen, and other varying symptoms.
Avoiding Those Almighty Germs

A novel proactive role in learning to stay safe with severe chronic neutropenia (SCN) is the foremost of all our minds. The challenges we face do not only differ from the general public in that SCN patients are more susceptible, but in many cases, our healthcare needs land us in the very places we should be avoiding.

It is no secret that healthcare acquired infections cause nearly 90,000 hospital deaths and an additional $4.5 billion in medical expenses. National organizations have begun to recognize this and they are working to fight it, but we have to do our part too.

Let's discuss the basics of bacteria and modes of transmission for a moment. There are two distinctive types of bacteria: gram-negative and gram-positive. Gram-negative cell walls are not as tough as the gram-positive cell walls. It’s harder to kill gram-positives because the cell walls are tougher in gram-positives – they have a thick, peptidoglycan layer.

Although the two types of bacteria don’t have a true “preference” for one another, gram-negative bacteria will survive longer on a moist surface because their cell walls are more vulnerable to drying out. On skin, you mostly find gram-positive organisms, unless the skin is moist. If it is moist, then you can find both gram-negatives and gram-positives. There are both gram-negatives and gram-positives in human faces, but around the rectum, unless it’s moist, the organisms that end up staying on the skin are for the most part gram-positives (i.e. enterococcus, staphylococcus, streplococcus, etc.).

Our natural skin flora can be a source of infection. You may sometimes hear the hematologists speak of our “danger zone” with our ANCs (able to do much more). This is where good hand hygiene comes in. We can’t sterilize skin, but we can reduce the bacterial load our skin carries. According to the Institute for Healthcare Improvement’s (IHI) guidance document, transmission of healthcare associated pathogens most often occurs via the contaminated hands of healthcare workers. Today’s hand washing compliance rate for healthcare workers hovers around an average of 40 percent. What’s more shocking is this is an exceptional rate compared to that of the general public. Always request that your doctors and nurses wash their hands before examining you. You have the right to expect them to wash often.

You may think well, many healthcare workers wear gloves. The CDC Web site reads: “the use of gloves does not eliminate the need for hand hygiene. Likewise, the use of hand hygiene does not eliminate the need for gloves.”

Transmission

There is no argument that infectious organisms can be spread from surfaces to hands to patients. A good example is an outbreak of MRSA and VRE in a 4-bed long term care facility in Pennsylvania. Over half (52 percent) of the residents and nearly half (46 percent) of surveyed employees had gastrointestinal symptoms during the reported infectious period.

Another study released this summer tested the hypothesis of infection transmission from surfaces to hands. In this project, researchers inoculated the upholstery, floor, and wall coverings in a hospital area with vancomycin-resistant enterococcus (VRE) and Pseudomonas aeruginosa. To aid in the assessment of potential for transmission, volunteers touched the inoculated surfaces and then palm plates for later review to test for growth.

Four hours following inoculation, all surfaces had recovered of VRE, and 13 of 14 of surfaces had persistent MRSA. After cleaning (following manufacturer’s instructions for each surface), VRE was recovered from only seven surfaces, while MRSA was recovered from five surfaces. The plate cultures from the volunteers’ hands all tested positive for VRE.

Environmental sources of infection transmission

If you culture your carpet, at any given moment you’ll get about 10,000 bacteria per square inch. The environment is just covered with bacteria and some forms can survive for up to 72 hours on some surfaces.

A Chicago Tribune investigative report solidified the importance of environmental contamination when investigators alleged that in 2000, 75 percent of an estimated 103,000 patients’ deaths linked to hospital acquired infection (HAI) could have been prevented.

The U.S. National Science Foundation (NSF) has determined that poorly maintained equipment and poorly trained personnel are the biggest culprits.

With Special Thanks

Anne Dennis

Anne recently retired following many years of service with SCN. Anne, we not only wish you the very best in your future endeavors, we also wish to thank you for all you have done, all your kind words of encouragement, and your dedication to us over the years.

You will be missed....

Spring 07 NL.qxd 5/15/07 9:42 AM Page 4
Celia Franklin Races Thru Life Despite SCN

By Julie Janzen

Celia Franklin, a second-year University student, doesn't let her idiopathic neutropenia keep her down. She ran in the 5K Forester Invitational and finished 10th overall.

"I was able to improve my training," she said. She trained really hard during the summer following that dreadful freshman year, and it paid off. The following season, she became the best runner on her team.

Her comeback involved a full season with the NU Wildcats, finishing first among NU runners in two events and second in another. She led over all of her team's runners at the Big Ten Championships that year with a time of 22:45 and did it again just two weeks later at the Midwest Regional Championships with a time of 23:03.

She set a few personal records that year as well, finishing the 5K Sean Earl Invitational with a time of 18:25 and the 8K Pre-National Invitational with a time of 22:55. She wrapped up the year becoming NU's recipient of the Big Ten Sportsmanship Award.

Celia again ran in all six races for the NU Wildcats this past year. Her dedication paid off when she won the individual title in NU's sweeping-season Chuck Carroll Invitational. Celia won her second Big Ten Invitational with a time of 23:14.

Among very impressive stats, she ended the season finishing third for NU and 95th overall at the NCAA Midwest Regional Championships.

"I have one more season this year, and I am hoping that I will be able to finish it in good shape," she said. Celia has had her fair share of challenges including a stress fracture in her right femur. A bone density test following the fracture shows she has healed, so she has been taking calcium supplements to help keep her bones strong.

Because her legs are quite muscular, she administers her daily Neupogen shot herself.

"I think I am doing a good job," she explains. "By 4 p.m. the next day I am already feeling a lot better."

Celia was even able to go on a training trip to California's Death Valley during her senior year. She had never been there before, and she was able to see the desert and hike through it.

"I think I am doing well overall," she said. "I have had some ups and downs, but I am feeling better now."

Celia is one of the few athletes on the NU track team who has been using Neupogen. She injects herself with the medication every morning.

"I developed a close relationship with our team's medical staff," she said. "They have been very supportive of me and have helped me manage my condition."
Many cord blood banks offer their services free of charge to fami-
lies in need. For example, CBR (Cord Blood Registry), located in
Seattle, Wash., offers a “Designated Transplant Program” as a pub-
lic service.

CBR provides the Program (also referred to as DTP) free of charge
to families wishing to store their newborn’s umbilical cord blood stem
cells for a sibling or other family member diagnosed with a life-threaten-
ing disease that is currently treatable with stem cells; he is a first- or sec-
degree relative; has a hematologist/oncologist who agrees that the
stem cells can be used for treatment.

CBR requires little paperwork to be filled out by the parents and the
treating hematologist. Once completed and returned, CBR will decide to
accept or decline each case as they see fit.

If approved, they will send the collection kit free of charge and will
process and store the newborn’s cord blood sample for an undetermined
amount of time at no cost to the family.

In addition, should the physician who collected the cells charge, CBR
will reimburse that expense up to $300. The only fee for the family
is required to pay is the carrier charge for the cells to be transported
from the place of collection (i.e. the hospital where you give birth) to the
CBR processing facility. This charge is generally $100.

For more information on the Designated Transplant Program, please
contact Cord Blood Registry at (888) 932-6568 or visit
cordblood.com/dtp/index.asp.

For other companies that extend this courtesy, visit: www.parterns
insidecordblood.com/content/usa/medical/caseofneed.shtml.

Screening can actually be done through either

bank on it!

The following conversion chart is for Neupogen at 300 micrograms per milliliter
(300 mcg/1mL) concentration. Please note: other concentrations are available,

6 micrograms 0.02 milliliters 2 units
12 micrograms 0.04 milliliters 4 units
18 micrograms 0.06 milliliters 6 units
24 micrograms 0.08 milliliters 8 units
30 micrograms 0.1 milliliters 10 units
60 micrograms 0.2 milliliters 20 units
120 micrograms 0.4 milliliters 40 units
180 micrograms 0.6 milliliters 60 units
240 micrograms 0.8 milliliters 80 units
300 micrograms 1.0 milliliters 100 units

The Five-Second Rule
De-Mythed!

We’ve all heard of it and most of us and even lived by it as small
children. The golden five-second rule that tells us that if we pick up that
dish whatever-we-dropped within five seconds it is still OK to eat.

Well, researchers at Clemson University investigated this long run-
ning childhood standard. Their results may surprise you - or at least make
you rethink your devotion to the rule.

Experiments were conducted to determine both the survival and trans-
fer of Salmonella Typhimurium from tile, wood and carpet:

researcher that currently, there are no clinical labs that per-
form this testing (only his and other research
labs, but they are not at liberty to do the “clini-
ical” screening for patients). Link says the one thing that is needed most
for his and other researchers is asking “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the one thing that is needed most
for his and other researchers is asking “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the one thing that is needed most
for his and other researchers is asking “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the one thing that is needed most
for his and other researchers is asking “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the one thing that is needed most
for his and other researchers is asking “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the one thing that is needed most
for his and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the one thing that is needed most
for his and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the one thing that is needed most
for his and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the one thing that is needed most
for his and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the one thing that is needed most
for his and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the one thing that is needed most
for his and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the one thing that is needed most
for his and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the one thing that is needed most
for his and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the one thing that is needed most
for his and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this
knowledge of these genetic mutations, Link says the question he
and other researchers are asking is “Can we use this