Advances in treatment

Peter Newburger, MD

Changing Landscape of G-CSF: Biosimilars

- Biosimilars offer options for G-CSF dosing
 - Neupogen[®]
 - Granix ®
 - Zarxio[®]
 - Nivestym [®]
 - Releuko[®]
 - Zarxio[®]

- No significant differences in reported adverse reactions
- Differences may exist in how the drug is supplied (pre-filled syringes, multi-use vials) and concentration

Filgrastim (G-CSF) biosimilars

- Dosage forms and strengths
 - Single dose vials: 300 mcg/1 mL or 480 mcg/1.6 mL
 - Prefilled syringes: 300 mcg/0.5 mL or 480 mcg/0.8 mL
 - Prefilled syringes are twice as concentrated
 - Prefilled syringes cannot measure increments less than 0.1 mL (60 mcg)
- Prescribers are often not familiar with dosing limitations of pre-filled syringes
- Zarxio is <u>only</u> available in pre-filled syringes; cannot administer a dose less than 0.3 mL (180 mcg) in these syringes

Picture Worth a Thousand Words

- A dose less than 0.3 mL cannot be accurately measured using the ZARXIO prefilled syringe.
- You should not inject a dose less than 0.3 mL (180 mcg) from a ZARXIO prefilled syringe.

Novel drugs - discussed by Dr. Dale

Advances in surveillance for MDS/AML in congenital neutropenia

- Current standard: bone marrow examination for cell content and chromosomal changes (e.g. monosomy [single copy] of Chr. 7)
- Somatic mutations: acquired genetic changes in bone marrow stem cells that may provide earlier prediction of MDS/AML
- Peripheral blood rather than bone marrow?? maybe in the future

Advances in transplant

First, an overview

Slides adapted from presentations by my colleagues at Boston Children's Hospital

Overview

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative treatment option, but candidates need to be appropriately selected as it is associated with 5-10% treatment related mortality and potential late effects

Indications for Allogeneic Transplant

Malignant Disease	Non-Malignant Disease		
Hematopoietic Malignancy	Multi-lineage Disorders of Hematopoiesis	Metabolic Disorders	Lineage Specific Disorders
Leukemia AML/MDS High risk or relapsed ALL Very high risk or relapsed CML Accelerated phase Blast crisis Poor response to TKI Lymphoma Refractory HI /NHI	 Aplastic anemia Fanconi anemia Other IBMFs 	 Adrenoleukodystrophy Mucopolysaccharidosis 	 <u>RBC</u> Sickle cell disease Thalassemia <u>Platelets</u> CAMT WAS <u>Neutrophils</u> SCN CGD LAD <u>Lymphocytes</u> SCID Hyper IgM syndrome, WAS

Types of transplant

- Donor matching:
 - Autologous (self e.g. gene therapy)
 - Matched related (usually a sibling)
 - Matched unrelated (~9 million donors in National Marrow Donor Program)
 - Mismatched unrelated many different degrees of mismatch
 - Haplo-identical (half-matched, usually a parent)
- Sources of donor stem cells:
 - Bone marrow
 - Peripheral blood
 - Umbilical cord blood

- Identification of a matched donor is accomplished through "HLA typing" of family members and/or unrelated volunteers for a suitable match
 - A sibling has a 25% of being a "full HLA-match" and 50% chance of being a "half HLA-match", also called a haploidentical donor
 - A parent is almost always a "haplo" match and sometimes better
- The degree of HLA match and other donor factors such as age are important for reducing the risk of transplant

Hematopoietic stem cell sources

Bone marrow

Umbilical cord blood

Advances in transplant

- Risks of death or severe complications are constantly improving
- Less toxic regimens are being developed
- New drugs for graft-versus-host disease (e.g. Abatacept)
- Nearly equal outcomes for related vs unrelated donors
- Amazingly good results with haplo-identical transplant almost everyone has a possible donor
- Improved technologies for fertility preservation male and female

Gene therapy

- Selective knockout discussed by Emendo team
- Total knockout in development by Boston and Tubingen (Germany) teams
 - Rationale: neutrophil elastase is dispensable
 - Papillon-Lefevre syndrome, a loss of four neutrophil protease enzymes including elastase, is quite mild
 - Efficiency is high and the same reagents can be applied to all patients with *ELANE* neutropenia
 - Base editing approaches in development will not involve DNA cuts that can produce genetic damage

Gene therapy

Downside: still requires autologous transplantation of stem cells

- Bone marrow or peripheral blood stem cell harvest
- Conditioning as for transplant
- Period of very low blood counts and immune deficiency
- NO risk of GVHD

Questions...

If you dare

